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Abstract

Opioids are widely used for treating different types of pains, but overuse and abuse of pre-

scription opioids have led to opioid epidemic in the United States. Besides analgesic effects,

chronic use of opioid can also cause tolerance, dependence, and even addiction. Effective

treatment of opioid addiction remains a big challenge today. Studies on addictive effects of

opioids focus on striatum, a main component in the brain responsible for drug dependence

and addiction. Some transcription regulators have been associated with opioid addiction,

but relationship between analgesic effects of opioids and dependence behaviors mediated

by them at the molecular level has not been thoroughly investigated. In this paper, we devel-

oped a new computational strategy that identifies novel targets and potential therapeutic

molecular compounds for opioid dependence and addiction. We employed several statisti-

cal and machine learning techniques and identified differentially expressed genes over time

which were associated with dependence-related behaviors after exposure to either mor-

phine or heroin, as well as potential transcription regulators that regulate these genes, using

time course gene expression data from mouse striatum. Moreover, our findings revealed

that some of these dependence-associated genes and transcription regulators are known to

play key roles in opioid-mediated analgesia and tolerance, suggesting that an intricate rela-

tionship between opioid-induce pain-related pathways and dependence may develop at an

early stage during opioid exposure. Finally, we determined small compounds that can

potentially target the dependence-associated genes and transcription regulators. These

compounds may facilitate development of effective therapy for opioid dependence and

addiction. We also built a database (http://daportals.org) for all opioid-induced dependence-

associated genes and transcription regulators that we discovered, as well as the small com-

pounds that target those genes and transcription regulators.
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Introduction

Opioids such as morphine have long been used as mainstay therapy for treating different types

of chronic severe pains such as cancer pain, noncancer-related pain, and neuropathic pain [1].

As a result of relaxation on restriction of prescription opioids for treating chronic noncancer

pain and promotion of opioids in treatment by pharmaceutical industry, practitioners and

many organizations, non-medical use and abuse of prescription opioids has been increasing

rapidly in the United States [2], which in turn leads to opioid epidemic [3].

Despite that opioids have beneficial analgesic effects of alleviating acute and chronic pain,

chronic opioid use can lead to adverse side effects including tolerance, hyperalgesia, with-

drawal reactions, and even dependence [2, 4, 5]. In order to achieve optimal pain management,

many studies have been carried out to elucidate mechanisms underlying both the beneficial as

well as the adverse effects of opioids. Plenty of evidence has shown that crosstalks between

neuronal signaling, immune responses and chemokines play significant roles in the pain path-

ways responsive to opioids such as morphine, and these signaling networks can lead to both

behavioral and structural changes in the brain [6, 7].

Studies on effects of opioids to relieve pain mainly focus on brain regions such as periaque-

ductal gray, rostral ventromedial medulla, and dorsal root ganglia [6], while investigations of

addictive effects of opioids mostly focus on striatum, since striatum is a main component of

the reward system responsible for drug dependence and addiction. Striatum receives several

types of neuronal inputs from prefrontal cortex (PFC), ventral tegmental area (VTA), and

other areas of the brain [8], and over time, drug dependence and addiction can be reinforced

[9]. At the molecular level, many transcription factors (TFs) have been associated with behav-

iors related to drug abuse and addiction. Some TFs known to play key roles in drug addiction

include ΔFosB, cyclic AMP-responsive element binding protein (CREB), NF-κB, and MEF2

[7]. For instance, opioids can reduce Fos expression in the direct pathway striatal neurons

[10]. Moreover, drugs of abuse can also alter gene transcription and induce addiction by epige-

netic mechanisms [7].

Despite that different drugs of abuse often elicit similar behavioral responses in animals

and humans, molecular mechanisms underlying addiction induced by different drugs can be

distinctly different [10]. Opioids such as morphine and heroin increase dopamine level in

nucleus accumbens, the main component of the ventral striatum, through activation of dopa-

minergic neurons in VTA [10]. It is popularly believed opioids inhibition of GABAergic neu-

rons in VTA is another contributing factor of disinhibition of dopamine in VTA and

increased rewarding effects in nucleus accumbens [11–16]. Opioids can also increase gluta-

mate release in the nucleus accumbens, which results in changes in synaptic plasticity such as

decreased dendritic branching and spine density [17].

Despite all these efforts, however, much remains to be known about molecular connections

between the genes and pathways activated by opioids in the pain-related processes and those

involved in opioid dependence and addiction. Elucidating such connections can not only shed

light on the mechanisms which contribute to the opioid epidemic, but may also allow people

to identify better candidate targets for therapeutic interventions to prevent opioid dependence

and addiction during pain management.

In order to treat opioid addiction, opioid antagonists such as naltrexone have been used to

treat opioid addiction for several decades. However, they have shown limited efficacy in

relapse prevention [18, 19]. Recently, alternative approaches such as receptor-based therapeu-

tic strategies have been proposed which aim to target receptors including G protein-coupled

receptors (GPCRs) such as μ-, δ-, and κ-opioid receptors, chemokine receptors, as well as neu-

roimmune receptors such as Toll-like receptors 4 (TLR4) [20–22]. However, despite all the
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efforts and advances in understanding the mechanism of addiction in the past decades, they

have not led to development of effective new anti-addiction agents [23]. Therefore, finding

novel targets and strategies is needed for treating opioid dependence and addiction.

In this work, we developed a new computational strategy for identification of novel

genome-wide targets and potential therapeutic treatments for opioid dependence. In particu-

lar, this strategy involves first detecting genes and pathways induced by either morphine or

heroin which are associated with dependence, then identification of small compounds which

can target the dependence-associated genes responsive to the opioids. We analyzed a data set

generated from a previous study by Piechota et al [24], in which, gene expression responses in

mouse striatum were investigated after mice were exposed to each of the six drugs of abuse

(i.e., morphine, heroin, cocaine, methamphetamine, ethanol, or nicotine). Using the strategy

we developed, we identified morphine and heroin-induced genes and pathways associated

with dependence-related behaviors such as physical dependence and psychological depen-

dence, as well as transcription regulators which can potentially regulate these genes. Finally,

we identified small compounds which can potentially target some of the dependence-related

genes and transcription factors. A database for all the dependence associated genes and tran-

scription regulators, along with small compounds for targeting those genes and transcription

regulators, is available at http://daportals.org. Our findings can facilitate identification of novel

candidate gene targets as well as potential therapeutic interventions for treating opioid depen-

dence and addiction.

Results

Identification of genes and patterns induced by either morphine or heroin

In order to identify genes induced by either morphine or heroin over time, we applied a local

regression method to gene expression microarray data collected from mice treated by each

opioid at different time points [24]. Using this approach, we found that 423 genes were differ-

entially expressed (DE) after morphine administration in mice, while 608 genes were differen-

tially induced by heroin. Using k-means clustering, we identified 6 expression patterns among

genes induced by each opioid (Figs 1 and 2), with genes upregulated and downregulated at 3

phases: Immediate-Early (IE), Middle (M), and Late (L), respectively. Compared to morphine,

heroin induced twice as many genes in the IE and L phases, respectively (Figs 1 and 2), indicat-

ing that heroin elicits neurobiological responses in mice not only faster but also longer lasting

than morphine.

Enriched Gene Oncology (GO) and KEGG terms among differentially

expressed genes (DEGs)

Our GO and KEGG analyses revealed that many DEGs induced by either morphine or heroin

in the mouse striatum were involved in the immune and neuronal processes and pathways

(Tables 1 and 2, S1 and S2 Tables). Many of these biological processes are previously known to

play important roles in opioid-mediated pain pathways in brain regions such as dorsal root

ganglia [6]. However, despite that the neuroimmune signaling processes induced by either

morphine or heroin in mouse striatum share some similarities, it is also apparent that the two

opioids elicit distinct neurobiological responses in the animals which we will detail below:

Immune and neuronal responses to morphine in mouse striatum

Immune responses. Most genes involved in the immune system were induced by mor-

phine in the M phase. As shown in Table 1, some genes participating in anti-inflammatory
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processes were responsive to morphine, e.g., genes involved in negative regulation of NF-κB

transcription factor activity were upregulated, and those involved in MAPK pathway, humoral

immune response, and induction of positive chemotaxis were downregulated. Since anti-

inflammatory pathways are known to play key roles in opioid-induced pain relief [6], these

results are consistent with the fact that morphine induces analgesia effect in animals.

On the other hand, some genes participating in proinflammatory responses were also upre-

gulated by morphine, including, e.g., genes involved in Toll-like receptor signaling pathway,

and activation of innate immune response. Notably, previous evidence showed that proinflam-

matory responses play central roles which contribute to tolerance during chronic opioid expo-

sure [7]. Genes involved in response to xenobiotic stimulus were also upregulated in the L

phase, in line with the fact that these genes are essential in sensing that the cells are under the

‘insult’ of the drug.

Together, these results suggest that crosstalks between genes involved in proinflammatory

and anti-inflammatory pathways have already initiated in mouse striatum during short-term

morphine administration.

Neuronal responses. Our results also showed that genes participating in neuronal

responses were induced by morphine (Table 1), which is not surprising, given known neuro-

logical effects of morphine in the brain. For example, positive regulation of autophagy and

programmed cell death were upregulated in the IE phase, and also genes involved in glutama-

tergic synaptic transmission, glutamate receptor signaling pathway, and sensory organ devel-

opment were all downregulated in the M phase. Notably, all these neuronal signaling events

have been implicated in the analgesia induced by morphine (Table 1), again supporting the

Fig 1. Genes differentially expressed after morphine exposure in mouse striatum. (A) Patterns of differentially expressed genes induced by morphine. (B-C) These

plots show six genes upregulated (B) and downregulated (C) by morphine in the IE, M, and L phase, respectively.

https://doi.org/10.1371/journal.pone.0207027.g001
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notion that morphine can induce analgesia in the treated mice. Also, genes involved in cell

projection morphogenesis were upregulated in the L phase, in line with the evidence that mor-

phine can induce structural changes in mice during chronic exposure [33].

Together, our results suggest that even during short-term morphine exposure, complex

crosstalks between genes involved in proinflammatory and anti-inflammatory pathways, neu-

ronal signaling, and the chemokine system have already initiated in mouse striatum, which

can contribute to analgesia and/or tolerance effects if exposure of the drug lasts longer.

Immune and neuronal responses to heroin in mouse striatum

Immune responses. Our results showed that distinct from morphine, many immune

genes induced by heroin were downregulated in the L phase (Table 2), which included

MyD88-dependent Toll-like receptor signaling pathway, microglial cell activation, T-helper 1

type immune response (Il4, Tlr6, Il27), positive regulation of I-κB kinase/NF-κB signaling,

regulation of granulocyte chemotaxis, inflammatory response, and regulation of MAP kinase

activity. Notably, all these pathways are known to be active in proinflammatory responses dur-

ing chronic opioid exposure [6]. Therefore, downregulation of these pathways indicates that

heroin induces strong anti-inflammatory response and thus elicits strong analgesic effects in

the mice.

Neuronal responses. Genes involved in neuronal activities, such as regulation of nervous

system development and excitatory postsynaptic membrane potential (IE phase) and cation

transmembrane transport (M phase) were upregulated by heroin, whereas genes involved in

regulation of neuron death were downregulated (IE phase) (Table 2). These results also agree

Fig 2. Genes differentially expressed after heroin exposure in mouse striatum. (A) Patterns of differentially expressed genes induced by heroin. (B-C) These plots

show six genes upregulated (B) and downregulated (C) by heroin in the IE, M, and L phase, respectively.

https://doi.org/10.1371/journal.pone.0207027.g002
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with previous findings that neuronal responses play active roles in opioid-related pain process

[6].

Also, we noticed that genes involved in cell morphogenesis involved in neuron differentia-

tion, positive regulation of axonogenesis, and regulation of synapse organization were upregu-

lated among IE and L phases after heroin exposure. These results are supported by the

previous evidence that drugs of abuse can induce changes in structural plasticity in animals

during chronic exposure [43].

Other key biological responses. Our results also showed that heroin induced genes par-

ticipating in other key biological processes involved in pain-related pathways, e.g., genes

involved in protein autophosphorylation are upregulated in the IE phase. Since protein phos-

phorylation is known to play key roles in desensitization and implicated in opioid-induced

hyperalgesia [22], our results suggest that these genes contribute to dependence induced by

chronic use of heroin; this speculation is confirmed by our association analysis described

below.

Table 1. Significantly enriched biological processes and pathways induced by morphine which were involved in opioid-mediated pain pathways and corresponding

literature support. In the “Phase” column, Up-IE, Up-M, and Up-L represent upregulated in the IE, M, and L phase, respectively, while that Down-IE, Down-M, and

Down-L represent downregulated in the IE, M, and L phase, respectively.

GO/KEGG term Phase Effect (Literature support) DEGs Associated with Dependence and Other

Harmful Effects

Immune system Pattern recognition receptor

signaling pathway

Up-M Proinflammatory responses, tolerance [6,

22]

Irak1: phys dep; Ptafr: phys dep.

Activation of innate immune

response

Proinflammatory responses, tolerance [6,

22]

Irak1: phys dep; Ptafr: phys dep.

Toll-like receptor signaling pathway Allodynia and hyperalgesia [25, 26];

NF-κB activation [27–29]

Irak1: phys dep.

Response to xenobiotic stimulus Up-L Tolerance [30, 31]

Negative regulation of NF-κB TF

activity

Analgesia

NF-κB activation [6]

MAPK signaling pathway Down-

M

Anti-inflammatory responses Analgesia

[32]

Humoral immune response

Induction of positive chemotaxis Down-L Nociceptive pathways [22]

Neuronal

signaling

Cell projection morphogenesis Up-L Structural plasticity [33] Numb: acute, dep, HCC, phys dep, phys harm

Calcium signaling pathway Down-

IE

Analgesia [22]

Synaptic transmission, glutamatergic Down-

M

Analgesia [34–36] Grin1: phys dep, pleasure

Ensheathment of neurons Nociceptive pathways [22] Cldn5 (HM�): phys dep.

Synaptic transmission, GABAergic Proinflammatory; tolerance [6, 37]

Glutamate receptor signaling

pathway

Analgesia [6] Cacng7: dep, phys dep, pleasure

Sensory organ development Analgesia [38, 39] Anp32b: phys dep.

Negative regulation of neuron

apoptotic process

Neuronal apoptosis [6] Grin1: phys dep, pleasure

Other key

processes

Protein dephosphorylation Up-IE Alleviating inflammatory hyperalgesia [6,

40]

Dusp12 (HM): phys dep.

positive regulation of autophagy Production of proinflammatory cytokines,

tolerance [6]

Plekhf1: psycho dep.

Regulation of programmed cell death Production of proinflammatory cytokines,

tolerance [6]

Dapk1 (HM): psycho dep; Plekhf1 (HM): psycho dep;

Pim3 (HM): phys dep.

Note: the full names of the behaviors can be found in S3 Table. HM� indicates that the DEG is induced by both heroin and morphine.

https://doi.org/10.1371/journal.pone.0207027.t001

Finding targets and therapeutic compounds for opioid dependence

PLOS ONE | https://doi.org/10.1371/journal.pone.0207027 November 7, 2018 6 / 21

https://doi.org/10.1371/journal.pone.0207027.t001
https://doi.org/10.1371/journal.pone.0207027


Association of morphine- and heroin-induced DEGs with harmful effects

of drugs of abuse

In order to find out whether DEGs induced by either morphine or heroin are associated with

various harmful effects linked to drugs of abuse, we conducted the association analysis

between expression levels of morphine- or heroin-induced DEGs and twelve DA-related

harmful effects including dependence, physical dependence, psychological dependence, plea-

sure, physical harm, social harm, health care cost, and conditioned place preference (See S3

Table and Methods for details).

Using this approach, we detected 44 morphine-induced DEGs and 61 heroin-induced

DEGs significantly associated with dependence-related behaviors at the nominal level of signif-

icance (p< 0.05) (S4 and S5 Tables). Among these dependence-associated DEGs, 9 were

induced by both morphine and heroin, of which 6 were induced in the IE phase. These results

can be searched in our database at http://daportals.org.

Next, we investigated whether the dependence-associated DEGs induced by either mor-

phine or heroin were involved in the pain-related neuroimmune pathways mediated by opi-

oids. As shown in Tables 1 and 2, we found that a significant number of the dependence-

associated DEGs induced by the opioids were involved in the pain-related neuroimmune

Table 2. Significantly enriched biological processes and pathways induced by heroin which were involved in opioid-mediated pain pathways and corresponding lit-

erature support. All of the abbreviations used in this table can be found in the legend of Table 1.

GO/KEGG term Phase Effect

(Literature support)

DEGs Associated with Dependence and Other

Harmful Effects

Immune system Response to biotic stimulus Up-IE Nociceptive pathways [6] Ace: dep, phys dep; Baiap2: pleasure, psycho dep;

Stab1 (HM): phys dep

MyD88-dependent toll-like receptor

signaling pathway

Down-L Anti-inflammatory effect; analgesia

[30, 41]

T-helper 1 type immune response (Il4, Tlr6,

Il27)

Positive regulation of I-κB kinase/NF-κB

signaling

Inflammatory response

Regulation of MAP kinase activity

Microglial cell activation Anti-inflammatory responses;

analgesia [6]

Regulation of granulocyte chemotaxis Nociceptive pathways [22]

Neuronal

signaling

Cell morphogenesis involved in neuron

differentiation

Up-IE Nociceptive pathways [22] Baiap2: pleasure, psycho dep

Regulation of nervous system development Nociceptive pathways [22] Ace: dep, phys dep; Ncs1: dep; Baiap2: pleasure,

psycho dep

Regulation of excitatory postsynaptic

membrane potential

Tolerance and hyperalgesia [22] Sez6: dep

Potassium ion transport Up-M Proanalgesic effect [22]

Cation transmembrane transport Tolerance and hyperalgesia [32] Slc25a42: dep

Sodium ion transmembrane transport Up-L Allodynia and hyperalgesia [22]

Regulation of synapse organization Analgesia [22]

Regulation of neuron death Down-

IE

Linked to anti-inflammatory response;

analgesia [42]

Bag1: dep, pleasure; Tfap2d: dep, pleasure, psycho

dep

Other key

processes

Protein autophosphorylation Up-IE Hyperalgesia [22] Dapk1 (HM): psycho dep; Pim3 (HM): phys dep

Negative regulation of receptor recycling Up-L Tolerance [22] Pcsk9: pleasure, psycho dep

Response to cAMP Down-

M

Analgesia [6]

https://doi.org/10.1371/journal.pone.0207027.t002
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pathways. Moreover, some of these genes could be induced by both morphine and heroin, e.g.,

Dapk1, Plekhf1, Pim3, and Dusp12 were upregulated by both morphine and heroin in the IE

phase, and were associated with psychological dependence and physical dependence,

respectively.

Detection of potential transcription regulators that regulate the opioid-

induced dependence-associated DEGs

In order to find out whether the dependence-associated DEGs induced by each opioid were

co-regulated by any TFs or epigenetic factors, we performed the TF and epigenetic factor bind-

ing site enrichment test using the ENCODE ChIP-Seq significance tool [44]. Our analysis

showed that 17 transcription regulators potentially modulated morphine-responsive depen-

dence-associated DEGs (S6 Table), while that 12 transcription regulators modulated heroin-

responsive dependence-associated DEGs (S7 Table). More details about our results are

described below.

Transcription regulators detected after morphine exposure

Known TFs associated with dependence and addiction. More than half of the TFs we

detected regulating dependence-associated DEGs after morphine exposure are previously

known to play important roles in drug dependence and addiction. For example, we found that

MEF2A upregulated four DEGs which were associated with physical dependence in the M

phase, while that MEF2C upregulated one DEG associated with dependence in the IE phase

after morphine exposure, agreeing with the evidence that MEF2 is crucial in inducing behav-

ioral changes after exposure to drugs of abuse [7].

Novel TFs induced by morphine. Our results also showed a few novel TFs activated by

morphine. In order to quantify the magnitude of the effects the detected transcription regula-

tors on the dependence-related behaviors induced by the opioids, we developed a scoring met-

ric, called dependence score, based on the total fold changes of the dependence-associated

DEGs co-regulated by each regulator (see details in Methods). Using this approach, we found

that E2f6, which potentially regulated 13 DEGs associated with physical dependence after mor-

phine exposure, had the highest dependence score of 17.93. Also, we detected ZBTB33 and

ZKSCAN1 associated with physical dependence having high dependence scores (11 and 6.8,

respectively) after morphine exposure. In particular, ZBTB33 encodes a transcriptional regula-

tor Kaiso which can promote histone deacetylation and decrease expression levels of its target

genes [45], consistent with our results showing that ZBTB33 downregulates 8 genes in the M

phase. Also, Zkscan1 encodes a member of the Kruppel C2H2-type zinc-finger family of pro-

teins, which has been implicated in regulating the expression of GABA type-A receptors in the

brain [46].

Epigenetic factors. Our results showed that about half (8 out of 17) of the detected tran-

scription regulators after morphine exposure were epigenetic factors (S6 Table). Literature

search (S8 Table) suggests that these factors including HDAC8 (encoding histone deacetylase

8) and HDAC6 (encoding histone deacetylase 6) play important roles in histone acetylation,

histone methylation, DNA methylation, and chromatin remodeling [45, 47–52], in line with

the previous evidence that all these epigenetic events have been implicated in the neurobiologi-

cal responses to drugs of abuse in the brain [7]. Notably, among all the epigenetic factors,

SAP30 which encodes a component of the histone deacetylase complex had the highest depen-

dence score of 15.49 and can potentially co-regulate 11 morphine-responsive DEGs associated

with physical dependence.
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Transcription regulators detected after heroin exposure

Known TFs associated with dependence and addiction. DEGs upregulated by EGR1

and CREB1 were associated with psychological dependence in the IE phase after administra-

tion of heroin, consistent with the fact that both EGR1 and CREB are key TFs which regulate

genes involved in dependence-related behavioral responses during exposure of opioids as well

as other drugs of abuse [5, 7]. Moreover, our results showed that Polr2a (encoding the largest

subunit of RNA polymerase II), EGR1, and CREB1 were associated with social and physical

harm with the highest scores (> 20), suggesting that these TFs play key roles in the biological

mechanism that underlies the higher social and physical harm caused by heroin compared to

other drugs of abuse [4].

Novel TFs induced by heroin. We found that E2F6 (which showed the highest depen-

dence score in morphine) also had the highest dependence score of 6.52, potentially regulating

four DEGs associated with psychological dependence after exposure to heroin.

Epigenetic regulators. Similar to morphine, more than 40% of the detected transcription

regulators were epigenetic factors after heroin exposure (S7 Table). All these factors have been

known to play major roles in histone and DNA methylation, and chromatin remodeling meth-

ylation [50–53]. Notably, 3 epigenetic factors CTCF, EZH2, and SUZ12 were identified during

both morphine and heroin exposure.

Taken together, our results suggest that distinct transcriptional regulatory mechanisms are

responsive to exposure of morphine and heroin in mouse striatum, and that epigenetic regula-

tion plays major roles after exposure to both opioids. Further investigation is needed to eluci-

date the roles of the novel TFs (e.g., E2F6) with high dependence scores after exposure of

either morphine or heroin.

Finding small compounds which can target the DEGs and the dependence-

associated transcription regulators induced by the opioids

To facilitate development of therapeutic interventions for treating morphine or heroin depen-

dence, we developed a strategy which allowed us to identify small compounds that can target

the opioid-induced dependence-associated DEGs and their potential transcription regulators

(see details in Methods). Our results are shown in S9 and S10 Tables for morphine and heroin,

respectively. Among all the small compounds we identified, we found that Calmidazolium

could target 8 morphine-induced dependence-associated DEGs (S9A Table), and that Securi-

nine could target E2F6 which had the highest dependence score after morphine exposure

(Table 3). Also, we identified that Phenacetin and Buspirone could target 11 and 4 heroin-

induced dependence-associated DEGs, respectively (Table 4, S1 Fig), and that Meclofenoxate

could target E2F6 which had the highest dependence score also after heroin exposure (S10B

Table).

Comparison of our approach and findings with those in a previous work by

Piechota et al. [24]

Since the data set we analyzed in this work was generated from a previous study in [24], it is

worthwhile to compare our approach and results with those reported in [24]. There are two

main differences between the two studies. First, Piechota et al. employed two-way ANOVA to

identify genes differentially expressed in mouse striatum responsive to some of the six drugs of

abuse. The limitation of using two-way ANOVA to analyze time-course data is that time is

considered as a factor in the ANOVA analysis and thus the trends of expression levels of genes

(over time) are ignored. We, instead, employed a local regression smoothing technique to
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identify differentially expressed genes responsive to the drug exposure, which was able to cap-

ture the trends of the expression levels of the genes over time. Second, Piechota et al. focused

on identification and characterization of gene expression patterns induced by multiple drugs

Table 3. Small compounds negatively correlated with the potential transcription regulators after morphine administration. All of the abbreviations used in this table

can be found in the legend of Table 1.

Compound Transcription Regulators Fold Change Phase Associated Harmful Effects

Benserazide TAF1 2.9 Up-IE Dep, pleasure

MEF2A 5.34 Up-M Phys dep

ZKSCAN1 -6.81 Down-M Phys dep

Piperacetazine SUZ12 1.2 Up-IE Dep

ZKSCAN1 -6.81 Down-M Phys dep

Securinine MEF2C 1.7 Up-IE Dep

BRF2 1.39 Up-M Phys dep

E2F6 -17.93 Down-M Phys dep

Isocorydine MEF2A 5.34 Up-M Phys dep

Gabapentin CTCF 2.97 Up-IE Chronic, dep, phys harm

MEF2A 5.34 Up-M Phys dep

HDAC6 -4.84 Down-M Acute, phys dep

https://doi.org/10.1371/journal.pone.0207027.t003

Table 4. Small compounds negatively correlated with dependence-associated DEGs after heroin administration. All of the abbreviations used in this table can be

found in the legend of Table 1.

Compound DEGs Fold Change Phase Harmful Effects Associated with DEGs

Prilocaine DAPK1 1.63 Up-IE Acute, intox, psycho dep

ACE 1.34 Up-IE Acute, dep, HCC, phys dep, phys harm, soc

CEP350 1.29 Up-IE Dep, HCC, soc harm

FAAH -1.42 Down-IE Acute, dep, phys harm, pleasure, soc harm, soc

MPDU1 -1.39 Down-L Dep, HCC, phys dep, phys harm, psycho dep

Phenacetin PLEKHF1 1.64 Up-IE Psycho dep

RPL7L1 1.56 Up-IE Dep, HCC, phys dep, phys harm, soc harm, soc

EXTL1 1.24 Up-IE Dep, soc harm, soc

SPON2 1.23 Up-M Acute, dep, HCC, phys dep

TMTC4 1.19 Up-M Dep, HCC, phys dep, phys harm

PCSK9 1.52 Up-L Chronic, CPP, pleasure, psycho dep

FBRSL1 -1.17 Down-IE Psycho dep

ACSL4 -1.34 Down-M CPP, dep, HCC, phys dep

FEM1C -1.32 Down-M Hcc, phys dep, soc harm

TOR3A -1.21 Down-M Acute, dep, HCC, phys dep, phys harm, soc harm, soc

Procyclidine KLF2 2.31 Up-IE CPP, dep, HCC, phys dep, phys harm

FEM1C -1.32 Down-M Hcc, phys dep, soc harm

Spiradoline PLEKHF1 1.64 Up-IE Psycho dep

KIF23 1.36 Up-IE Dep, HCC, phys harm, soc harm, soc

CEP350 1.29 Up-IE Dep, HCC, soc harm

PTBP3 -1.19 Down-L Chronic, CPP, intox, phys dep, phys harm, psycho dep

Buspirone NCS1 1.34 Up-IE Dep, HCC, soc harm

TBC1D2B 1.31 Up-IE Dep, HCC, phys dep, phys harm, soc harm, soc

SLC35D1 -1.29 Down-M Acute, phys dep

TOR3A -1.21 Down-M Acute, dep, HCC, phys dep, phys harm, soc harm, soc

https://doi.org/10.1371/journal.pone.0207027.t004
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of abuse, whereas we were interested in the genes and patterns induced by either morphine or

heroin, and particularly when the genes were involved in pain pathways and associated with

dependence.

Using our approach, we identified 423 and 608 DE genes induced by morphine and heroin,

respectively, in mouse striatum (Figs 1 and 2). Since only the two-way ANOVA was used to

identify the 42 DE genes in [24], it is unknown which of the six drug(s) induced the genes.

Regardless, we compared the DE genes in the two studies, and found that 11 morphine-

induced genes and 17 heroin-induced genes in our work overlapped with the previous study.

We also compared the enriched functional groups of genes identified by the two studies, and

found that the majority of enriched GO groups identified in the previous study were also dis-

covered in our work (see S11 Table), e.g., protein phosphatase activity, apoptosis, anatomical

structure morphogenesis, calcium ion binding, GTPase mediated signal transduction, and

transmembrane transporter activity. However, as shown in S1 and S2 Tables, we also identified

many more significantly enriched GO and KEGG groups of genes than those in [24], such as

those involved in the neuroimmune signaling processes (Tables 1 and 2).

Discussion

Many studies have been conducted which intend to delineate pain-related pathways induced

by opioids. However, much remains to be known about the molecular connection between

these opioid-mediated pain pathways and those playing key roles in drug dependence and

addiction. Dissecting these pathways can facilitate identification of candidate targets for devel-

oping effective therapeutic interventions which ideally can target opioid tolerance and depen-

dence while preserving opioid analgesic effect.

In this study, we developed a computational strategy to identify candidate dependence-

associated DEGs induced by either morphine or heroin, as well as to find small compounds

which could target these genes for treating dependence of the opioids. Using this strategy, we

analyzed a time-course gene expression microarray data set generated previously to investigate

gene expression patterns responsive to various drugs of abuse in mouse striatum [24]. In par-

ticular, we first employed a local regression technique to detect genes differentially expressed

over 8 hours of time in mouse striatum after either morphine or heroin exposure. Then, we

performed correlation analysis to identify morphine or heroin-induced DEGs which were

associated with twelve harmful effects including dependence commonly linked to drugs of

abuse. Furthermore, we detected potential transcription regulators including TFs and epige-

netic factors that regulated the dependence-associated DEGs using an ENCODE enrichment

tool. Finally, to facilitate the identification of candidate targets and development of effective

therapy for morphine and heroin-induced dependence, we identified small compounds which

could potentially target against some of the detected dependence-associated DEGs and tran-

scription regulators.

Using the approach described above, we found that a significant number of the DEGs

responsive to either morphine or heroin in mouse striatum were involved in the neuroim-

mune signaling pathways, which are typically activated in the pain-related pathways during

chronic opioid use previously identified in other brain areas including periaqueductal gray,

rostral ventromedial medulla, and dorsal root ganglia [6]. Using correlation analysis, we found

that a considerable portion of the pain pathway-related DEGs, previously known to play active

roles in opioid analgesia, tolerance, hyperalgesia, and allodynia, were associated with the harm-

ful effects (such as dependence) linked to morphine and heroin as well as many other drugs of

abuse, e.g., Irak1 (encoding interleukin-1 receptor-associated kinase 1) in the enriched Toll-

like receptor signaling pathway (Table 1) induced by morphine was correlated with physical
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dependence at a nominal level of significance (p< 0.05). Toll-like receptor signaling pathway

has been known to play crucial roles in proinflammatory signaling and tolerance to opioid

analgesia. We also noticed that some dependence-associated DEGs could be induced by both

morphine and heroin, e.g., among DEGs upregulated in the IE phase, Dapk1 and Plekhf1 were

correlated with psychological dependence, while Dusp12 and Pim3 were associated with physi-

cal dependence after exposure to both morphine and heroin. It is unclear what roles these

genes (induced by both opioids) play when mice were first exposed to morphine, then

switched to heroin later on, a scenario commonly seen among human drug abusers.

Despite the similarities in gene expression responses induced by both morphine and heroin

in mouse striatum, differences between the two opioids are also obvious. For example, a large

number of the DEGs involved in immune signaling were downregulated in the L phase after

heroin exposure, as opposed to morphine exposure, suggesting that heroin elicited strong anti-

inflammatory responses in the L phase and thus induced acute analgesic effects in the mice.

Considering that heroin is diamorphine which is rapidly converted into several psychoactive

metabolites including 6-mono-acetylmorphine (6MAM) and morphine in humans and mice

[54, 55], it is not surprising that morphine and heroin elicit similar responses in vivo. However,

several factors may account for the differences between the two opioids. First, evidence sug-

gests that heroin and its metabolite 6MAM can elicit different responses in mice than mor-

phine, e.g., the former, but not the latter, can elicit acute toxic effect on locomotor activity,

particularly at high doses [55], suggesting that 6MAM may contribute to the differential

responses in mice induced by heroin and morphine. Second, since both heroin and 6MAM

have much higher degrees of lipophilicity than morphine, after intraperitoneal (i.p.) injection

as done in [24], heroin and 6MAM can cross the blood-brain barrier much faster than mor-

phine [56] and thus some of the late gene expression response to heroin (but not morphine)

exposure could be captured by the gene expression profiling which measured gene expression

levels at no later than 8 hours after the opioid injection. Finally, since different dosages of mor-

phine (20 mg/kg) and heroin (10 mg/kg) were used for i.p. injection of the mice, it is difficult

to assess to what extend this dosage effect affects the gene expression responses in mouse stria-

tum induced by morphine and heroin.

Among detected transcription regulators that potentially regulate the dependence-associ-

ated DEGs, MEF2A induced by morphine as well as EGR1 and CREB1 by heroin are known to

play crucial roles in drug addiction. We also found that more than 40% of the detected tran-

scription regulators are epigenetic factors after both morphine and heroin exposure, including

HDAC8 and HDAC6 activated by morphine, which supports the previous notion that epige-

netic factors are important for addiction. Furthermore, using the dependence score, a metric

we developed for measuring the extent the detected transcription regulators affect the depen-

dence-associated DEGs, we found that E2F6 has the highest dependence scores after exposure

of both morphine and heroin.

In summary, our work here intent to elucidate molecular connections between the analge-

sic and tolerance-related pain pathways and harmful side effects of opioid use during pain

treatment. Despite the general belief that morphine is safe for managing patients with pain,

our results suggest that morphine may induce tolerance to analgesia and dependence on the

drug in the patients in the very early stage, which may increase the possibility of the same

patients to abuse heroin thereafter, since heroin may further induce acute analgesic effects as

suggested by our results. Moreover, because heroin can cause both structural and behavioral

changes among patients, abusing heroin after morphine may lead to more potent dependence

on the drugs among the patients.

Furthermore, we found several small compounds which could potentially target some of

the dependence-associated DEGs and the detected transcription regulators induced by the
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opioids. In particular, we identified Securinine and Meclofenoxate which could target E2F6 in

humans after exposure to morphine and heroin, respectively. These compounds can facilitate

future development of effective therapeutic interventions which can target the adverse side

effects of morphine and heroin, while preserving their analgesic effects.

We also compared the approach and findings from this work with those from the previous

study by Piechota et al. [24] from which the data set was generated. The approaches employed

by the two studies were different but complement with each other. Piechota et al. aimed to

identify and characterize genes differentially induced by any of the six drugs using the two-

way ANOVA analysis, while we focused on finding and investigating genes induced by either

morphine or heroin (using a local regression technique) which were also associated with

dependence and previously known to affect pain pathways. Comparison of the enriched func-

tional (GO and KEGG) groups of genes identified in the two studies suggest that the majority

of the GO groups discovered in the previous study were also identified in our work and that

our results revealed many more biologically meaningful functional groups of genes involved in

neuroimmune signaling pathways.

The limitations of our work include the following. The gene expression microarray data we

analyzed spanned only 8 hours after administration of morphine and heroin, which limited

our ability to discover chronic effects of the drugs. In the future study, we intend to employ the

same strategy to investigate long-term effects of morphine and heroin, and to compare them

with the acute effects we discovered in this work. Also, our results in this work were generated

based on analyzing a single gene expression profiling data set, further biological validation of

some of the genes differentially induced over time in mouse striatum by morphine and heroin

should be conducted to verify our findings here. Despite these limitations, we found that our

results agree well with the previously known evidence about drug abuse and addiction, sug-

gesting our findings are valid and worth further in-depth investigation. Moreover, our work

provides insight into the molecular connections between the opioid-induced pain-related

pathways and the adverse harmful effects associated with morphine and heroin. Understand-

ing such connections may facilitate development of effective therapies which allow people to

target dependence-associated genes and transcription regulators at an early stage of opioid use

while preserving analgesic effects of opioids.

Methods

Dataset

The gene expression microarray data set we analyzed in this work was obtained from the NCBI

Gene Expression Omnibus (GEO) database under the accession number [GEO:GSE15774].

This data set was generated from a previous work described in [24], in which, gene expression

alterations in mouse striatum were investigated after the mice were treated by various drugs of

abuse, including morphine, heroin, methamphetamine, cocaine, nicotine and alcohol. Detailed

description of the data set can be found in [24]. Briefly, after a single dose of drug administra-

tion, gene expression was obtained from the mouse striatum at 1, 2, 4, 8 hours afterwards. Mean-

while, samples from saline- and naïve-treated control group were collected at 0, 1, 2, 4, 8 hours

as controls. There were three biological replicates for each drug group and each time point.

Identification of genes differentially expressed over time in mouse striatum

after exposure of either morphine or heroin

In order to identify genes differentially expressed over time in mouse striatum after adminis-

tration of either morphine or heroin, we employed a local regression smoothing technique
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[57] to estimate the smoothed time course gene expression data for each opioid. The detailed

description of the strategy can be found in [58]. For each opioid, expression values of each

gene (i.e., transcript) were available for 1, 2, 4, and 8 hours, and expression values for time

point 0 for the corresponding genes from the naïve group were used to represent the control

time point (i.e., 0 hour) for each opioid. In particular, expression values for each gene over dif-

ferent time points were first fitted using a local polynomial quadratic (degree = 2) model with

the bandwidth optimally estimated using a leave-one-out cross validation procedure [57]. To

determine whether a gene is differentially expressed over time with respect to the control time

point, we calculated the simultaneous 95% confidence intervals for the fitted (or expected)

intensity values using a method due to Sun and Loader [59]. The p-values were adjusted using

the Bonferroni correction to account for multiple hypothesis testing. We determined a gene as

differentially expressed if its expression value at any time point T relative to the control time

point satisfied: 1) adjusted p-value < 0.05, and 2) fold change� 1.2.

Identification of temporal patterns for DEGs induced by either morphine

or heroin using cluster analysis

In order to identify temporal patterns for DEGs responsive to either morphine or heroin expo-

sure, we applied a k-means clustering algorithm proposed by Hartigan and Wong [60] to the

temporal expression values of the DEGs. The Euclidean distance was used to measure dissimi-

larities between different genes. A thousand iterations were performed to find an optimal par-

tition of K clusters where K is pre-assigned. To determine an optimal number of the clusters

for the DEGs, we employed the average silhouette width (ASW) as described in [61], and when

K = 6, ASW is the largest for the DEGs induced by both morphine and heroin.

GO and KEGG pathway enrichment analysis

We performed GO and KEGG pathway enrichment analysis to identify biological processes

and pathways that were overrepresented among DEGs in each cluster after exposure of either

morphine or heroin. We performed the enrichment analysis with the GOstats R software pack-

age [62], which finds enriched functional groups using the hypergeometric test with the aid of

the functional terms in the GO and KEGG databases. GO terms and KEGG pathways were

considered as significantly enriched if their p-values < 0.05.

Association of morphine- and heroin-induced DEGs with harmful effects

of drugs of abuse

Our association analysis aimed to determine whether morphine- and heroin-induced DEGs

were associated with any harmful effects of drugs of abuse. The scores which assessed the mag-

nitudes of the twelve harmful effects of various drugs of abuse were taken from Nutt et. al. [4]

and can be found in S3 Table. In particular, the scores for the harmful effects encompassing

three categories, including physical harm (overall, acute, chronic), dependence (pleasure, psy-

chological, physical), social harm (overall, health-care costs), and conditioned place preference

for the drugs including morphine, heroin, cocaine, methamphetamine, ethanol, and nicotine

were used to calculate the association of each harmful effect and the DEGs induced by either

morphine or heroin. Specifically, let Si denote a vector of the scores for harmful effect i corre-

sponding to drugs D, where D = [morphine, heroin, cocaine, methamphetamine, ethanol, and

nicotine]. Let Gj denote a vector of expression values of gene G corresponding to drugs D at

time point j; Gj is a DEG induced by either morphine or heroin at time point j, but the gene is

not required to be differentially induced by the other drugs at the same time point. The
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expression values of gene G for the drugs including cocaine, methamphetamine, ethanol, and

nicotine were estimated for each drug by using the same local regression smoothing tech-

niques as described above for morphine and heroin. Finally, we calculated the correlation

between Gj and Si using both the Pearson correlation and a quadratic polynomial regression; if

the resulting p-value from any of the methods was less than 0.05, Gj was considered as signifi-

cantly associated with Si.

Identification of human transcription and epigenetic factors that

potentially regulate the dependence-associated DEGs induced by each

opioid

To identify potential transcription and epigenetic factors that regulate dependence-associated

DEGs responsive to each opioid in mouse striatum, we employed the ENCODE ChIP-Seq sig-

nificance tool [44] to identify human TFs and epigenetic factors whose binding sites were sig-

nificantly enriched among the DEGs associated with dependence (i.e., dependence,

psychological, and/or physical dependence) in each of the six identified clusters after either

morphine or heroin exposure. The ENCODE ChIP-Seq significance tool calculates enrich-

ment scores of the transcription regulators using the hypergeometric test, and the resulting p-

values were corrected by an FDR procedure to account for multiple hypothesis testing. A

1000-base pair (bp) window upstream of the transcription start site (TSS) and downstream of

the transcription termination site (TTS) were considered for each DEG. A TF or an epigenetic

factor was considered as significantly enriched if its FDR p-value < 0.05.

Furthermore, to facilitate ranking the significantly enriched TFs and epigenetic factors in

terms of their impact on dependence, we developed a scoring metric called the ‘dependence

score’ as follows. For each transcription regulator R activated in a certain phase P, we assume

that R regulates a number N of morphine or heroin-induced DEGs associated with a depen-

dence-related harmful effect (such as dependence, psychological, or physical dependence)

within phase P. As shown in Figs 1 and 2, the IE, M, and L phases correspond to 0–2 hours,

2–4 hours, and 4–8 hours after exposure to either morphine or heroin. The ‘dependence score’

for R in phase P was then defined as
PN

i¼1
FCi, where FCi represents the maximum absolute

fold change of the expression values of a DEG Gi within phase P, relative to that of the control

time point, and Gi is regulated by R. The higher the dependence score, the more impact the

transcription regulator R can have on dependence.

Using a similar concept as the dependence score, we also assigned association scores to

transcription regulator R if the DEGs it regulates were also associated with other harmful

effects of drugs (as shown in S3 Table). Specifically, an association score between a transcrip-

tion regulator R and a harmful effect H was defined as the sum of the maximum absolute fold

change of the DEGs regulated by R in phase P that were associated with H.

Finding small molecular compounds to target the opioid-induced

dependence-associated DEGs and the transcription regulators

Gene expression patterns in cells can change during treatment by small-molecule drugs or

compounds [63]. If a small compound has an opposite effect on transcription than opioids, the

small compound has potential to reverse the gene signature induced by opioids and hence the

subsequent harmful effects caused by opioids. With the availability of gene expression profiles

of small molecular compounds, we were able to compare them with those of morphine and

heroin, and identify small compounds with the potential for treating dependence and addic-

tion induced by each opioid.

Specifically, we employed the following two-step strategy to find the small compounds:
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Finding DEGs induced by small compounds

First, a commercial Illumina BaseSpace (former Nextbio™) software (Santa Clara, CA, USA,

http://www.nextbio.com) were used to obtain the DEGs induced by small compounds in cells.

In BaseSpace, most of the raw gene expression datasets involving perturbations by small com-

pounds were obtained from the Gene Expression Omnibus (GEO) database (http://www.ncbi.

nlm.nih.gov/geo/). Only genes with the p-values < 0.05 and absolute fold changes >1.2 were

considered as DEGs induced by small compounds. To identify top compounds that have gene

expression profiles most correlated with the dependence-associated DEG or the transcription

regulators induced by morphine or heroin, we searched the gene expression profiles of small

compounds stored in BaseSpace through BaseSpace integrated Pharmaco Atlas search. Then,

the correlation between the DEGs induced by small compounds and the opioid-induced

DEGs or transcription regulators was calculated as described below.

Calculation of the correlation between the DEGs induced by small

compounds and the opioid-induced DEGs or transcription regulators

For each opioid-induced dependence-associated DEG, we used its maximum absolute fold

change over the measured time points (i.e., 1, 2, 4, and 8 hours) (which was defined as the ratio

of the highest absolute expression value of the gene relative to that at the control time point) to

represent its fold change. For each transcription regulator, we used its dependence score to

represent its fold change value.

The correlation between the DEGs induced by each small compound and the opioid-

induced dependence-associated DEGs or transcription regulators was calculated using the

BaseSpace software. This software provided a modified form of the rank-based enrichment sta-

tistics to compare the two sets of the DEGs [64, 65]. BaseSpace pre-processed gene expression

data with biomedical ontologies to enable comparison among heterogeneous datasets from

different species. It also used meta-analyses to provide consistent predictions from multiple

instances of similar perturbations, e.g., genes expression profiles from different cell lines

induced by the same compounds [66]. All analyses using the BaseSpace software were per-

formed with the default parameters.

S1 Fig shows an example of the significant negative correlation between the (61) heroin-

induced dependence-associated DEGs and the buspirone-induced DEGs (p-value = 0.0277).

Four genes were regulated by both heroin and buspirone, but in opposite directions.

Supporting information

S1 Fig. Significant negative correlation between the 61 heroin-induced dependence-associ-

ated DEGs and the buspirone-induced DEGs (p-value = 0.0277). Four genes were regulated

by both heroin and buspirone, but in opposite directions.

(TIF)

S1 Table. Significantly enriched GO terms and KEGG pathways induced by morphine in

different phases and their association with harmful effects of drugs. (A) Significantly

enriched GO terms induced by morphine. (B) Significantly enriched KEGG pathways induced

by morphine.

(XLSX)

S2 Table. Significantly enriched GO terms and KEGG pathways induced by heroin in dif-

ferent phases and their association with harmful effects of drugs. (A) Significantly enriched

GO terms induced by heroin. (B) Significantly enriched KEGG pathways induced by heroin.

(XLSX)
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S3 Table. The scores of the harmful effects associated with drugs of abuse (adapted from

Nutt, et. al., Lancet 2007; 369: 1047–53).

(XLSX)

S4 Table. 44 dependence-associated DEGs induced after morphine exposure.

(XLSX)

S5 Table. 61 dependence-associated DEGs induced after heroin exposure.

(XLSX)

S6 Table. Significantly enriched transcription regulators and associated harmful effects

after morphine exposure.

(DOCX)

S7 Table. Significantly enriched transcription regulators and associated harmful effects

after heroin exposure.

(DOCX)

S8 Table. Supporting evidence of involvement of transcription regulators in drug depen-

dence and addiction from literature.

(DOCX)

S9 Table. Small compounds negatively correlated with dependence-associated DEGs and

the potential transcription regulators after morphine administration. (A) Small com-

pounds negatively correlated with dependence-associated DEGs induced by morphine. (B)

Small compounds negatively correlated with the transcription regulators induced by mor-

phine.

(XLSX)

S10 Table. Small compounds negatively correlated with dependence-associated DEGs and

the potential transcription regulators after heroin administration. (A) Small compounds

negatively correlated with dependence-associated DEGs induced by heroin. (B) Small com-

pounds negatively correlated with the transcription regulators induced by heroin.

(XLSX)

S11 Table. Comparison of the enriched functional terms in this work with those in Pie-

chota, et al. (2011).

(XLSX)
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