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Abstract

We explore the intersection of human and machine creativ-
ity by generating sculptural objects through machine learning.
This research raises questions about both the technical details
of automatic art generation and the interaction between AI and
people, as both artists and the audience of art. We introduce
two algorithms for generating 3D point clouds and then dis-
cuss their actualization as sculpture and incorporation into a
holistic art installation. Specifically, the Amalgamated Deep-
Dream (ADD) algorithm solves the sparsity problem caused
by the naive DeepDream-inspired approach and generates cre-
ative and printable point clouds. The Partitioned DeepDream
(PDD) algorithm further allows us to explore more diverse 3D
object creation by combining point cloud clustering algorithms
and ADD.
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Introduction
Will Artificial Intelligence (AI) replace human artists or will
it show us a new perspective into creativity? Our team of
artists and AI researchers explore artistic expression using
Machine Learning (ML) and design creative ML algorithms
to be possible co-creators for human artists.

In terms of AI-generated and AI-enabled visual artwork,
there has been a good amount of exploration done over the
past three years in the 2D image area traditionally belonging
to the realm of painting. Meanwhile, there has been very lit-
tle exploration in the area of 3D objects, which traditionally
would belong to the realm of sculpture and could be easily ex-
tended into the area of art installations. The creative genera-
tion of 3D object research by Lehman et al. successfully gen-
erated “evolved” forms, however, the final form was not far
from the original form and could be said to merely mimic the
original [22]. Another relevant study, Neural 3D Mesh Ren-
derer [20] focuses on adjusting the rendered mesh based on
DeepDream [28] textures. In the art field, artist Egor Kraft’s
Content Aware Studies project [11] explores the possibilities
of AI to reconstruct lost parts of antique Greek and Roman
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Figure 1: Sculpture generated by creative AI, PDD.

sculptures. Nima et al. [27] introduced Vox2Net adapted from
pix2pix GAN which can extract the abstract shape of the input
sculpture. DeepCloud [5] exploited an autoencoder to gener-
ate point clouds, and constructed a web interface with analog
input devices for users to interact with the generation process.
Similar to the work of Lehman et al [22], the results generated
by DeepCloud are limited to previously seen objects.

In this paper, we introduce two ML algorithms to create
original sculptural objects. As opposed to previous methods,
our results do not mimic any given forms and are original and
creative enough not to be categorized into the dataset cate-
gories. Our method extends an idea inspired by DeepDream
for 2D images to 3D point clouds. However, simply translat-
ing the method generates low-quality objects with local and
global sparsity issues that undermine the integrity of recon-
struction by 3D printing. Instead we propose Amalgamated
DeepDream (ADD) which utilizes union operations during
the process to generate both creative and realizable objects.
Furthermore, we also designed another ML generation algo-
rithm, Partitioned DeepDream (PDD), to create more diverse
objects, which allows multiple transformations to happen on
a single object. With the aid of mesh generation software and
3D printing technology, the generated objects can be physi-
cally realized. In our latest artwork, it has been incorporated
into an interactive art installation.

Creative AI: ADD and PDD
Artistic images created by AI algorithms have drawn great
attention from artists. AI algorithms are also attractive for



their ability to generate 3D objects which can assist the pro-
cess of sculpture creation. In graphics, there are many meth-
ods to represent a 3D object such as mesh, voxel and point
cloud. In our paper, we focus on point cloud data which are
obtained from two large-scale 3D CAD model datasets: Mod-
elNet40 [38] and ShapeNet [9]. These datasets are prepro-
cessed by uniformly sampling from the surface of the CAD
models to attain the desired number of points. Point cloud is
a compact way to represent 3D object using a set of points
on the external surfaces and their coordinates such as those
shown in Figures 2 and 3. We introduce two algorithms, ADD
and PDD, which are inspired by 2D DeepDream to gener-
ate creative and realizable point clouds. In this section, we
will briefly discuss the existing 3D object generation meth-
ods, and then elaborate the ADD and PDD algorithms and
present some of the generated results.

Figure 2: ModelNet40 [38] Figure 3: ShapeNet [9]

Learning to Generate Creative Point Clouds
Using deep learning to generate new objects has been studied
in different data types, such as music [35], images [15], 3D
voxels [39] and point clouds [1, 23]. An example of a simple
generative model is shown in Figure 4.

Figure 4: An example of generative model.

Here a low-dimensional latent space h of the original ob-
ject space x is learned in accordance with the underlying
probability distribution.

p(x) =

∫
h

p(h)p(x|h)dh (1)

A discriminator is usually used to help distinguish the gener-
ated object x̂ and a real object x. Once the discriminator is
fooled, the generator can create objects that look very similar
to the original ones [15]. However, these generative models
only learn to generate examples from the “same” distribution
of the given training data, instead of learning to generate “cre-
ative” objects [13, 27].

One alternative is to decode the convex combination ĥ of
latent codes h1, h2 of two objects in an autoencoder to get

Figure 5: Encoding and decoding in latent space

final object X̂ . Specifically, an autoencoder is a kind of
feedforward neural network used for dimensionality reduc-
tion whose hidden units can be viewed as latent codes which
capture the most important aspects of the object [30]. A rep-
resentation of the process of encoding to and decoding from
latent space can be seen in Figure 5.

ĥ = t · h1 + (1− t) · h2
x̂ = Generator(ĥ),

where 0 ≤ t ≤ 1. Empirical evidence shows that de-
coding mixed codes usually produces semantically mean-
ingful objects with features from the corresponding objects.
This approach has also been applied to image creation [7].
One could adopt encoding-decoding algorithms for point
clouds [40, 17, 23] based on the same idea. The sampling
and interpolation results based on Li et al. [23] are shown in
Figure 6.

(a) Sampling (b) Sampling (c) Sampling

(d) Interpolation (e) Interpolation (f) Interpolation

Figure 6: Results of Li et al. [23].

Inspiration: DeepDream for Point Clouds In contrast
to simple generative models and interpolations, DeepDream
leverages trained deep neural networks by enhancing patterns
to create psychedelic and surreal images. For example in Fig-
ure 7, the neural network detects features in the input images
similar to the object classes of bird, fish and dog and then ex-
aggerates these underlying features. Given a trained neural
network fθ and an input image x, DeepDream aims to mod-
ify x to maximize (amplify) fθ(x; a), where a is an activation
function of fθ. After this process, x is expected to display



Figure 7: 2D DeepDream visualized

some features that are captured by fθ(x; a). Algorithmically,
DeepDream iteratively modifies x via a gradient update with
a certain learning rate γ.

xt = xt−1 + γ∇xfθ(x; a). (2)

Figure 8: Naive DeepDream
with undesirable sparse surface.

An extension of Deep-
Dream is to use a clas-
sification network as fθ
and we replace awith the
outputs of the final layer
corresponding to certain
labels. This is related
to adversarial attack [33]
and unrestricted adver-
sarial examples [6, 24].

Unfortunately, di-
rectly extending the
idea of DeepDream to
point clouds with neural
networks for sets [29, 41] results in undesirable point clouds
suffering from both local and global sparsity as shown in
Figure 8. To be specific, iteratively applying gradient update
without any restrictions creates local holes in the surface of
the object. Besides, the number of input points per object
is limited by the classification model. Consequently the
generated object is not globally dense enough to transform
into mesh structure, let alone realize in the physical world.

To avoid local sparsity in the generated point cloud, one
compromise is to run the naive 3D point cloud DeepDream
with fewer iterations or a smaller learning rate, but it re-
sults in limited difference from the input point cloud. An-
other approach to solving the sparsity problem is conducting
post-processing to add points to sparse areas. However, with-
out prior knowledge of the geometry of the objects, making
smooth post-processed results is non-trivial [19]. For this rea-
son, we simply take inspiration from the gradient update strat-
egy of DeepDream, while developing our novel algorithms.

Amalgamated DeepDream (ADD)
As opposed to images, mixing two point clouds is a surpris-
ingly simple task, which can be done by taking the union
of two point clouds because of their permutation invariance
property. For example, the union of two or three objects is
shown in figure 9. This observation inspires us to use a set-
union operation, which we call amalgamation, in the creation
process to address the drawbacks of naive extension.

(a) Union of airplane and bottle (b) Union of cone, vase and lamp

Figure 9: Amalgamated input for ADD.

Algorithm 1: Amalgamated DeepDream (ADD)
input : trained fθ and input X
output: generated object X̂
for x = X0, . . . , Xn do

x0 = x
for t = 1 . . . T do

x̂ = xt−1 + γ∇xfθ(xt−1; a)
xt = x̂
if t is divisible by 10 then

xt = xt ∪ x
down-sample xt to fix the number of points

end
end
X̂ = X̂ ∪ xT

end

For object X with any number of points, we first randomly
take it apart into several subsets with the number of points
that is required by the classification model, and then modify
the input image through gradient updating (2). In the end,
we amalgamate all the transformed subsets into a final object.
By doing this we can generate as dense objects as we want
as long as the input object allows. To solve the local spar-
sity, when running the gradient update (2) for each subset we
amalgamate the transformed point clouds with the input point
clouds after every 10 iterations. To avoid exploded number of
points, we also down-sample the object after each amalgama-
tion operation. We call the proposed algorithm Amalgamated
DeepDream (ADD) as shown in Algorithm 1.

(a) Input (b) Iteration 10 (c) Iteration 100

Figure 10: Transforming a bottle into a cone via ADD.



(a) Input: bowl; Target: chair (b) Input: keyboard; Target: car

Figure 11: ADD with single object input.

Experiments and results To test our methods, we use
DeepSet [41] with 1000 points capacity as our basic 3D deep
neural network model. We randomly sampled 10000 points
from the CAD models and feed them into ADD model for
100 iterations with learning rate set to 1. A running exam-
ple of ADD targeting the transformation of bottle into cone
in ModelNet40 [38], which is the same as Figure 8, is shown
in Figure 10. During the transformation process, ADD en-
joys the advantage of deforming objects based on gradient
updates with respect to a trained neural network as Deep-
Dream without creating obviously local sparse areas. It can
also better preserve the features of input point clouds with the
amalgamation operation when we create new features based
on DeepDream updates. In addition, the amalgamation of
several transformed subsets from original objects allows us
to generate denser objects that are realizable in the physical
world. More created point clouds from the objects in Figure 2
are shown in Figure 11.

ADD with amalgamated inputs In addition to using union
during the transformation process, we can push this idea fur-
ther by using amalgamated point clouds as input instead of
a single object. We keep the experimental setting the same.
Note that now we could have multiple of 10000 points as in-
put. The results of ADD with the union objects in Figure 9
are shown in Figure 12. Compared with Figure 11, ADD with
multiple objects as input results in objects with more geomet-
ric details benefited from a more versatile input space.

(a) Input: airplane, bottle;
Target: toilet

(b) Input: cone, vase, lamp;
Target: person

Figure 12: ADD with dual and triple object input.

Figure 13: Segmentation results of an airplane with 4 clusters.

Partitioned DeepDream (PDD)
As the example shown in Figure 7, applying DeepDream to
images produces more than one surreal patterns on each of
the images [28]. In contrast, the nature of ADD is to deform
the whole object simultaneously into a certain shape. It is es-
sential to extend such a basic algorithm in order to allow mul-
tiple, separate transformations on a single object. Therefore,
we propose Partitioned DeepDream as shown in Algorithm 2
which can be implemented based on various point cloud seg-
mentation algorithms. When compared with ADD, PDD pro-
vides a more controllable method for artists to explore with
and effectively increases the diversity of creation.

Algorithm 2: Partitioned DeepDream (PDD)
input : trained fθ, number of segments k, input X and

targets a
output: generated object X̂
S = PCSegmentation(X, k)
for x = S1, . . . , Sk do

Standardize x by x = (x− x̄)/σx
x̂ = ADD(fθ, x)
Recover x̂ by x̂ = x̂ ∗ σx + x̄

X̂ = X̂ ∪ x̂
end

In contrast to the simplicity of mixing two point clouds,
segmentation of point clouds is relatively hard and has been
studied in depth [16, 26, 34]. Mainstream segmentation
algorithms can be categorized into edge-based segmenta-
tion [31, 37], region growing segmentation [4], model-fitting
segmentation [2, 14], hybrid segmentation [36] and machine
learning segmentation [25]. In our work, manual segmenta-
tion is shown to obtain high-quality results but is extremely
tedious and delegates too much responsibility to the artist.

(a) Input: airplane (b) Input: chair

Figure 14: PDD targeting on random classes



(a) Target: airplane (b) Target: person (c) Target: bowl

Figure 15: PDD with guitar body only

Instead, we explore machine learning methods which can au-
tomatically divide the object into several meaningful parts.
For example, the segmentation results of an airplane with k-
means are displayed in Figure 13. Note that this method re-
quires the number of segments as input.

We extend ADD explained in Algorithm 1 with the k-
means point cloud segmentation algorithm in our experi-
ments. First, the input object is automatically divided into
several segments using k-means. Each segment must be stan-
dardized before it is fed into ADD, in order for it to be treated
as one distinct object. With this preprocessing step ADD al-
lows us to produce the desired features on different parts in-
dependently. In the end, we cancel the normalization and re-
union all segments into one object.

Experiments and results The same data preprocessing
methods and ADD model configurations are used here as
mentioned in the aforementioned ADD experiments. As for
the partition strategies, one can randomly select some tar-
geted categories for different parts and PDD results are dis-
played in Figure 14. This process is totally automatic with lit-
tle human involvement. However, the random factors would
lead to some undesired scattered points. Another more rea-
sonable method is to create novel objects with more human
participation by deforming the separate segments by design.
As shown in Figure 15, we create some point clouds from a
guitar shown in Figure 3 by only hallucinating on their body
parts, while keeping the neck part intact. As we can see, the
created objects are only locally modified while the over lay-

(a) Input: bottle; Upper target:
person; Lower: toilet

(b) Input: ashcan; Upper target:
cone; Lower: night stand

Figure 16: PDD on uniformly segmented objects

out remains that of a guitar.

PDD with manual segmentation strategies In addition to
automatic segmentation algorithms, two manual segmenta-
tion strategies have been tested. First, for highly symmet-
ric objects it is reasonable to uniformly divide it into several
parts. As shown in Figure 16, we manually partition a bot-
tle and an ashcan from their middle, and run PDD with some
selected targets on two segments separately.

Another intuitive way to segment point clouds is to uni-
formly segment the whole spaces into many cubic blocks and
treat the points in each block separately. The results based
on this strategy are presented in Figure 17 and 18. We par-
tition the whole space containing the airplane into 3 × 3 × 2
blocks alongside three axes, and generate features on each
block with either a random class or cone class using PDD.
In comparison to ADD, PDD can generate more delicate ob-
jects since it can manipulate different units of a single object.
Besides, this also indicates a more expansive space for gener-
ating creative 3D objects.

Figure 17: PDD with block
segmented objects targeting
random categories.

Figure 18: PDD with block
segmented objects targeting
cone.

Realization of Sculptural Object
From points clouds to mesh Given a novel point cloud,
our task becomes generating a mesh – a description of an
object using vertices, edges, and faces – in order to elim-
inate the spatial ambiguity of a point cloud representation.
While mesh generation, also known as surface reconstruc-
tion, is readily provided in the free software package Mesh-
Lab [10], each possible algorithm has its own use case, so this
task involves experimenting with each available algorithm to
find what generates the best reconstruction for a given point
cloud.

Our experiments focused on the following reconstruc-
tion algorithms: Delaunay Triangulation [8], Screened Pois-
son [21], Alpha Complex [18], and Ball-Pivoting [3]. While
each of these algorithms has its uses, ADD results in point
clouds with a greater variance in sparsity than typical point
clouds generated from real-world objects.

For all experiments, we limited the number of points to
10,000. If a generated point cloud had more than this num-
ber, we reduced using Poisson Disk Sub-sampling [12]. This
sub-sampling method is more intelligent than a simple uni-
form resampling and produces points that appear to balance
sparsity with finer definition.

An illustration of our findings can be found in Figure 19.
Typically, Delaunay Triangulation produces a mesh that elim-
inates all detail of the point cloud. This approach will there-
fore only be appropriate when it is applied to an exception-
ally sparse point cloud, as it would contain minimal detail



(a) Delaunay
Triangulation

(b) Screened
Poisson

(c) Alpha
Complex

(d) Ball
Pivoting

Figure 19: Reconstruction techniques

regardless of the reconstruction technique. Screened Poisson
extrapolates from the original point cloud, producing interest-
ing shapes that are unfortunately misleading of the underly-
ing structure. Alpha Complex and Ball-Pivoting are the two
most consistent reconstruction methods and they both pro-
duce similar meshes. One important difference is that Alpha
Complex produces non-manifold edges, all but making faith-
ful 3D printing impossible.

As a result of these trials, we settled on Ball-Pivoting after
Poisson Disk Sub-sampling to produce our final mesh.

From mesh to realizable 3D sculptures Our final goal is to
create 3D sculptures in the real world. We use standard soft-
ware Meshmixer [32] to solidify the surfaced reconstructed
point cloud created by ADD. The solidified version of Fig-
ure 19d can be seen in Figure 1. We then use Lulzbot TAZ
3D printer with dual-extruder, transparent PLA, and dissolv-
able supporting material to create the sculpture of the recon-
structed mesh. The printed sculptures of the point cloud in
Figure 12 (RHS) are shown in Figure 21.

Figure 20: Screen capture from Cura-Lulzbot software for 3d
printing

Figure 21: Created sculpture from ADD.

Figure 22: Sketch of Aural Fauna: Illuminato art installation
and a Photo from the touch-sound interaction test with tablet
computer interface

Conclusion
This paper describes our development of two ML algorithms
for point cloud generation, ADD and PDD, which possess the
ability to generate unique sculptural artwork, distinct from the
dataset used to train the underlying model. These approaches
allow more flexibility in the deformation in the underlying
object as well as the ability to control the density of points
required for meshing and printing 3D sculptures.

Through our development of ADD and PDD for sculptural
object generation, we show AI’s potential for creative endeav-
ours in art, especially the traditional field of sculpture and in-
stallation art. One challenge in the development of creative
AI is the contradiction between the need of an objective met-
ric for evaluating the quality of generated objects in the ML
literature and the desire for creative and expressive forms in
the art community. Reconciling these goals will require a
mathematical definition of creativity that can help guide the
AI’s generative process for each specific case. We will under-
take these deep computational and philosophical questions in
future work.

In the meantime, the realized 3D objects are an integral part
of our ongoing project that is an interactive art installation.
This project, Aural Fauna: Illuminato, presents an unknown
form of organism, aural fauna, that reacts to the visitors sound
and touch. Their sound is generated using machine learning.
The creatures bodies are the generated sculptural objects by
ADD and PDD. The sculptural objects could be installed on
the wall or be hung from the ceiling like a swarm and the
participant may interact with them using the touch-screen in-
terface and their voice input as seen in Figure 22. This project
aims to encapsulate the joint efforts of human artists and Cre-
ative AI as well as the viewer as partners in the endeavor.
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